K. K. SHAH JARODWALA MANINAGAR SCIENCE COLLEGE, Ahmedabad. Assignment-I S. Y. B. Sc. (Sem-IV) MATHEMATICS MAT-205 (Abstract Algebra-I)

Q-1 Define the following terms :

(i) Relation (ii) Reflexive Relation (iii) Symmetric Relation (iv) Transitive Relation (v) Equivalence Relation (vi) Binary Operation (vii) Associative Binary Operation (viii) Commutative Binary Operation (ix) Identity element relative to a binary operation (x) Group (xi) Commutative Group (xii) Order of a Finite Group (xiii) Order of an element. Q-2 Define an equivalence relation and determine whether the relation S defined by aSb if $a \neq 4$, $b \neq 4$ on the set Z, is an equivalence relation or not. **Q-3** If (G, *) is a group then prove the following properties : (i) a group (G, *) has a unique identity for binary operation *. (ii) every element has a unique inverse in a group (G, *). (iii) For $a, b \in G$, $(a * b)^{-1} = b^{-1} * a^{-1}$ (iv) For $a, b, c \in G$, $a * b = a * c \Rightarrow b = c$. **Q-4** Prepare a finite table and show that the set $(Z_4, +_4)$ forms a commutative group. **Q-5** Show that $G = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} | a, b \in R \right\}$ forms a commutative group under matrix addition. **Q-6** Prove that the set of forth roots of unity is an abelian group under usual multiplication. **Q-7** Prove that the subset G={ $a + b\sqrt{2}$ | $a, b \in Q$, $a^2 + b^2 \neq 0$ } of R is a group under usual multiplication of two real numbers. **Q-8** Prove that a group G is commutative if $a^2 = e$, for all $a \in G$. **Q-9** Prove that a Group G is commutative if $(ab)^2 = a^2b^2$, for all $a, b \in G$. Q-10 Answer the followings questions in <u>SHORT</u> : (a) Define an equivalence relation and a partition of a set. (b) Why the set of odd integers is not a group under '+'? (c) Give an example of non-commutative group. (d) Give an example of a group of order 4 in which each element is self inverse. (e) Give an example of a non-associative binary operation on R. Q-18 Determine whether the following statements are true or false : (i) The set N of natural numbers forms a group under usual operation of addition. (ii) The set Z of all integers forms a group under usual operation of addition. (iii) The set Z of all integers forms a group under usual operation of subtraction. (iv) The set Q of all rational numbers forms a group under usual operation of multiplication.