Assignment-2 KKSJ MANINAGAR SCIENCE COLLEGE B. Sc. (Sem-V) MAT-303 (Complex Variables and Fourier Series)

- 1. Find the image of the region R in z-plane, bounded by the lines x = 1, x = 2, y = 0, y = 1, under the mapping w = z + (2 - i).
- 2. Find the image of the infinite strips (a) $\frac{1}{4} < y < \frac{1}{2}$ and (b) $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$. Show them graphically.
- 3. If w = f(z) is a bilinear transformation which associate z_1, z_2, z_3 and z_4 to w_1, w_2, w_3 and w_4 respectively then prove that $\frac{(z_1-z_2)(z_3-z_4)}{(z_1-z_4)(z_3-z_2)} = \frac{(w_1-w_2)(w_3-w_4)}{(w_1-w_4)(w_3-w_2)}$.
- 4. Find the bilinear transformation which maps -1, 0, 1 of z-plane onto the points -i, 1, i of w-plane respectively.
- 5. Find a bilinear transformation that maps the points ∞ , -i, 0 of z-plane in to $0, 1, \infty$ of w-plane respectively.
- 6. Find bilinear transformation which maps $i, 1, \infty$ of z-plane to 1, i, 0 of w-plane respectively.
- 7. Obtain the image of |z i| < 3 under the transformation $w = \frac{iz+1}{2i+z}$.
- 8. Prove that if f(z) is analytic at z_0 and $f'(z_0) \neq 0$, then w = f(z) is conformal at z_0 .
- 9. Prove that the magnitude and the direction of angle between the lines y = 2x and y = x 1 remains same under the mapping $w = f(z) = z^2$.
- 10. Prove that the magnitude and the direction of angle between the lines y = 2x and y = x 1 remains same under the mapping $w = f(z) = \frac{1}{z}$.
- 11. If the series $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ converges uniformly to f in $[-\pi, \pi]$, then prove that it is the Fourier series for f on $[-\pi, \pi]$.
- 12. State and prove Euler's formula for the Fourier series.
- 13. State and prove Bessel's inequality for the Fourier series.
- 14. Find the Fourier series for the function $f(x) = x^2$ in $[-\pi, \pi]$ and deduce that (i) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}$, (ii) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots = \frac{\pi^2}{12}$.
- 15. Find the Fourier series for the function $f(x) = x + x^2$ in $[-\pi, \pi]$.
- 16. Obtain Fourier series for the function $f(x) = x^2 x$ in $[0, \pi]$.
- 17. Obtain Fourier series for the function $f(x) = e^{ax} \sin bx$ in $[0, \pi]$.
- 18. Express the function $f(x) = x + x^2$ as a Fourier series in $[-\pi, \pi]$.

- 19. Find the half range sine series of $f(x) = \frac{\pi}{4} \cos x$ in $(0, \pi)$.
- 20. Find a sine series for the function f(x) = x for $0 < x < \frac{\pi}{2}$ and f(x) = 0 for $\frac{\pi}{2} < x < \pi$.

epartment of Mathematics